Kanji Hosoda, Nobuhiro Koyama, Satoru Shigeno, Tomoyasu Nishimura, Naoki Hasegawa , Akihiko Kanamoto, Taichi Ohshiro , Hiroshi Tomoda
Antimicrob Agents Chemother
. 2024 Mar 6;68(3):e0091723. doi: 10.1128/aac.00917-23. Epub 2024 Feb 9.
ABSTRACT
Mycobacterium avium complex (MAC) is a serious disease that is mainly caused by infection with the non-tuberculous mycobacteria (NTM), Mycobacterium avium and Mycobacterium intracellulare. Seven new compounds, designated mavintramycins A–G (1–7), were isolated along with structurally related compounds, including amicetin (9) and plicacetin (10), from the culture broth of Streptomyces sp. OPMA40551 as anti-MAC compounds that were active against M. avium and M. intracellulare. Among them, mavintramycin A showed the most potent and selective inhibition of M. avium and M. intracellulare. Furthermore, mavintramycin A was active against more than 40 clinically isolated M. avium, including multidrug-resistant strains, and inhibited the growth of M. avium in a persistent infection cell model using THP-1 macrophages. Mavintramycin A also exhibited in vivo efficacy in silkworm and mouse infection assays with NTM. An experiment to elucidate its mechanism of action revealed that mavintramycin A inhibits protein synthesis by binding to 23S ribosomal RNA in NTM. Mavintramycin A, with a different chemical structure from those of clinically used agents, is a promising drug candidate for the treatment of MAC infectious disease.